PSBTs: Constructing and Signing Multiple Inputs - SegWit V0

The purpose of this section is to construct a PSBT that spends multiple inputs and signs it. We'll cover the following BIP 174 roles:

  • Creator: Creates a PSBT with multiple inputs and outputs.
  • Updater: Adds Witness and SegWit V0 data to the PSBT.
  • Signer: Signs the PSBT.
  • Finalizer: Finalizes the PSBT.

The example will focus on spending two SegWit V0 inputs:

  1. 20,000,000 satoshi UTXO, the first receiving ("external") address.
  2. 10,000,000 satoshi UTXO, the first change ("internal") address.

We'll be sending this to two outputs:

  1. 25,000,000 satoshis to a receivers' address.
  2. 4,990,000 satoshis back to us as change.

The miner's fee will be 10,000 satoshis.

This is the cargo commands that you need to run this example:

cargo add bitcoin --features "std, rand-std"

First we'll need to import the following:

use std::collections::BTreeMap;
use std::str::FromStr;

use bitcoin::bip32::{ChildNumber, IntoDerivationPath, Fingerprint, Xpriv, Xpub};
use bitcoin::hashes::Hash;
use bitcoin::locktime::absolute;
use bitcoin::psbt::Input;
use bitcoin::secp256k1::{self, Message, Secp256k1, Signing};
use bitcoin::consensus;
use bitcoin::transaction::{self, OutPoint, TxIn, TxOut};
use bitcoin::{
    Address, Amount, EcdsaSighashType, Network, Psbt, ScriptBuf, Sequence,
    Txid, WPubkeyHash, Witness, XOnlyPublicKey,
};

Here is the logic behind these imports:

  • std::collections::BTreeMap is used to store the key-value pairs of the Public Key PSBT input fields.
  • std::str::FromStr is used to parse strings into Bitcoin primitives
  • bitcoin::bip32 is used to derive keys according to BIP 32
  • bitcoin::hashes::Hash is used to hash data
  • bitcoin::locktime::absolute is used to create a locktime
  • bitcoin::psbt is used to construct and manipulate PSBTs
  • bitcoin::secp256k1 is used to sign transactions
  • bitcoin::sighash is used to create SegWit V0 sighashes
  • bitcoin::consensus is used to serialize the final signed transaction to a raw transaction
  • bitcoin::transaction and bitcoin::{Address, Network, OutPoint, ScriptBuf, Sequence, Transaction, TxIn, TxOut, Txid, Witness} are used to construct transactions
  • bitcoin::WPubkeyHash is used to construct SegWit V0 inputs

Next, we define the following constants:

use bitcoin::Amount;
const XPRIV: &str = "xprv9tuogRdb5YTgcL3P8Waj7REqDuQx4sXcodQaWTtEVFEp6yRKh1CjrWfXChnhgHeLDuXxo2auDZegMiVMGGxwxcrb2PmiGyCngLxvLeGsZRq";
const BIP84_DERIVATION_PATH: &str = "m/84'/0'/0'";
const MASTER_FINGERPRINT: &str = "9680603f";
const DUMMY_UTXO_AMOUNT_INPUT_1: Amount = Amount::from_sat(20_000_000);
const DUMMY_UTXO_AMOUNT_INPUT_2: Amount = Amount::from_sat(10_000_000);
const SPEND_AMOUNT: Amount = Amount::from_sat(25_000_000);
const CHANGE_AMOUNT: Amount = Amount::from_sat(4_990_000); // 10_000 sat fee.
  • XPRIV is the extended private key that will be used to derive the keys for the SegWit V0 inputs.
  • MASTER_FINGERPRINT is the fingerprint of the master key.
  • BIP84_DERIVATION_PATH is the derivation path for the BIP 84 key. Since this is a mainnet example, we are using the path m/84'/0'/0'.
  • DUMMY_UTXO_AMOUNT_INPUT_1 is the amount of the dummy UTXO we will be spending from the first input.
  • DUMMY_UTXO_AMOUNT_INPUT_2 is the amount of the dummy UTXO we will be spending from the second input.
  • SPEND_AMOUNT is the amount we will be spending from the dummy UTXO related to the first input.
  • CHANGE_AMOUNT1 is the amount we will be sending back to ourselves as change.

Before we can construct the transaction, we need to define some helper functions:

use std::collections::BTreeMap;
use std::str::FromStr;

use bitcoin::bip32::{ChildNumber, IntoDerivationPath, Fingerprint, Xpriv, Xpub};
use bitcoin::hashes::Hash;
use bitcoin::secp256k1::{Secp256k1, Signing};
use bitcoin::{Address, Amount, Network, OutPoint, Txid, TxOut};

const BIP84_DERIVATION_PATH: &str = "m/84'/0'/0'";
const DUMMY_UTXO_AMOUNT_INPUT_1: Amount = Amount::from_sat(20_000_000);
const DUMMY_UTXO_AMOUNT_INPUT_2: Amount = Amount::from_sat(10_000_000);
fn get_external_address_xpriv<C: Signing>(
    secp: &Secp256k1<C>,
    master_xpriv: Xpriv,
    index: u32,
) -> Xpriv {
    let derivation_path =
        BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
    let child_xpriv = master_xpriv
        .derive_priv(secp, &derivation_path)
        .expect("valid child xpriv");
    let external_index = ChildNumber::from_normal_idx(0).unwrap();
    let idx = ChildNumber::from_normal_idx(index).expect("valid index number");

    child_xpriv
        .derive_priv(secp, &[external_index, idx])
        .expect("valid xpriv")
}

fn get_internal_address_xpriv<C: Signing>(
    secp: &Secp256k1<C>,
    master_xpriv: Xpriv,
    index: u32,
) -> Xpriv {
    let derivation_path =
        BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
    let child_xpriv = master_xpriv
        .derive_priv(secp, &derivation_path)
        .expect("valid child xpriv");
    let internal_index = ChildNumber::from_normal_idx(1).unwrap();
    let idx = ChildNumber::from_normal_idx(index).expect("valid index number");

    child_xpriv
        .derive_priv(secp, &[internal_index, idx])
        .expect("valid xpriv")
}

fn receivers_address() -> Address {
    Address::from_str("bc1q7cyrfmck2ffu2ud3rn5l5a8yv6f0chkp0zpemf")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
}

fn dummy_unspent_transaction_outputs() -> Vec<(OutPoint, TxOut)> {
    let script_pubkey_1 = Address::from_str("bc1qrwuu3ydv0jfza4a0ehtfd03m9l4vw3fy0hfm50")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
        .script_pubkey();

    let out_point_1 = OutPoint {
        txid: Txid::all_zeros(), // Obviously invalid.
        vout: 0,
    };

    let utxo_1 = TxOut {
        value: DUMMY_UTXO_AMOUNT_INPUT_1,
        script_pubkey: script_pubkey_1,
    };

    let script_pubkey_2 = Address::from_str("bc1qy7swwpejlw7a2rp774pa8rymh8tw3xvd2x2xkd")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
        .script_pubkey();

    let out_point_2 = OutPoint {
        txid: Txid::all_zeros(), // Obviously invalid.
        vout: 1,
    };

    let utxo_2 = TxOut {
        value: DUMMY_UTXO_AMOUNT_INPUT_2,
        script_pubkey: script_pubkey_2,
    };
    vec![(out_point_1, utxo_1), (out_point_2, utxo_2)]
}

get_external_address_xpriv and get_internal_address_xpriv generates the external and internal addresses extended private key, given a master extended private key and an address index; respectively. Note that these functions takes a Secp256k1 that is generic over the Signing trait. This is used to indicate that is an instance of Secp256k1 and can be used for signing and other things.

receivers_address generates a receiver address. In a real application this would be the address of the receiver. We use the method Address::from_str to parse the string of addresses2 into an Address. Hence, it is necessary to import the std::str::FromStr trait. This is an arbitrary, however valid, Bitcoin mainnet address. Hence we use the require_network method to ensure that the address is valid for mainnet.

dummy_unspent_transaction_outputs generates a dummy unspent transaction output (UTXO). This is a P2WPKH (ScriptBuf::new_p2wpkh) UTXO.

The UTXO has a dummy invalid transaction ID (txid: Txid::all_zeros()), and any value of the const DUMMY_UTXO_AMOUNT_N that we defined earlier. Note that the vout is set to 0 for the first UTXO and 1 for the second UTXO. We are using the OutPoint struct to represent the transaction output. Finally, we return vector of tuples (out_point, utxo).

Now we are ready for our main function that will create, update, and sign a PSBT; while also extracting a transaction that spends the p2wpkhs unspent outputs:

use std::collections::BTreeMap;
use std::str::FromStr;

use bitcoin::bip32::{ChildNumber, IntoDerivationPath, Fingerprint, Xpriv, Xpub};
use bitcoin::hashes::Hash;
use bitcoin::locktime::absolute;
use bitcoin::psbt::{Input, PsbtSighashType};
use bitcoin::secp256k1::{Secp256k1, Signing};
use bitcoin::{
    consensus, transaction, Address, Amount, EcdsaSighashType, Network, OutPoint, Psbt, ScriptBuf, Sequence,
    Transaction, TxIn, TxOut, Txid, WPubkeyHash, Witness,
};

const XPRIV: &str = "xprv9tuogRdb5YTgcL3P8Waj7REqDuQx4sXcodQaWTtEVFEp6yRKh1CjrWfXChnhgHeLDuXxo2auDZegMiVMGGxwxcrb2PmiGyCngLxvLeGsZRq";
const BIP84_DERIVATION_PATH: &str = "m/84'/0'/0'";
const MASTER_FINGERPRINT: &str = "9680603f";
const DUMMY_UTXO_AMOUNT_INPUT_1: Amount = Amount::from_sat(20_000_000);
const DUMMY_UTXO_AMOUNT_INPUT_2: Amount = Amount::from_sat(10_000_000);
const SPEND_AMOUNT: Amount = Amount::from_sat(25_000_000);
const CHANGE_AMOUNT: Amount = Amount::from_sat(4_990_000); // 10_000 sat fee.

fn get_external_address_xpriv<C: Signing>(
    secp: &Secp256k1<C>,
    master_xpriv: Xpriv,
    index: u32,
) -> Xpriv {
    let derivation_path =
        BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
    let child_xpriv = master_xpriv
        .derive_priv(secp, &derivation_path)
        .expect("valid child xpriv");
    let external_index = ChildNumber::from_normal_idx(0).unwrap();
    let idx = ChildNumber::from_normal_idx(index).expect("valid index number");

    child_xpriv
        .derive_priv(secp, &[external_index, idx])
        .expect("valid xpriv")
}

fn get_internal_address_xpriv<C: Signing>(
    secp: &Secp256k1<C>,
    master_xpriv: Xpriv,
    index: u32,
) -> Xpriv {
    let derivation_path =
        BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
    let child_xpriv = master_xpriv
        .derive_priv(secp, &derivation_path)
        .expect("valid child xpriv");
    let internal_index = ChildNumber::from_normal_idx(1).unwrap();
    let idx = ChildNumber::from_normal_idx(index).expect("valid index number");

    child_xpriv
        .derive_priv(secp, &[internal_index, idx])
        .expect("valid xpriv")
}

fn receivers_address() -> Address {
    Address::from_str("bc1q7cyrfmck2ffu2ud3rn5l5a8yv6f0chkp0zpemf")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
}

fn dummy_unspent_transaction_outputs() -> Vec<(OutPoint, TxOut)> {
    let script_pubkey_1 = Address::from_str("bc1qrwuu3ydv0jfza4a0ehtfd03m9l4vw3fy0hfm50")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
        .script_pubkey();

    let out_point_1 = OutPoint {
        txid: Txid::all_zeros(), // Obviously invalid.
        vout: 0,
    };

    let utxo_1 = TxOut {
        value: DUMMY_UTXO_AMOUNT_INPUT_1,
        script_pubkey: script_pubkey_1,
    };

    let script_pubkey_2 = Address::from_str("bc1qy7swwpejlw7a2rp774pa8rymh8tw3xvd2x2xkd")
        .expect("a valid address")
        .require_network(Network::Bitcoin)
        .expect("valid address for mainnet")
        .script_pubkey();

    let out_point_2 = OutPoint {
        txid: Txid::all_zeros(), // Obviously invalid.
        vout: 1,
    };

    let utxo_2 = TxOut {
        value: DUMMY_UTXO_AMOUNT_INPUT_2,
        script_pubkey: script_pubkey_2,
    };
    vec![(out_point_1, utxo_1), (out_point_2, utxo_2)]
}

fn main() {
    let secp = Secp256k1::new();

    // Get the individual xprivs we control. In a real application these would come from a stored secret.
    let master_xpriv = XPRIV.parse::<Xpriv>().expect("valid xpriv");
    let xpriv_input_1 = get_external_address_xpriv(&secp, master_xpriv, 0);
    let xpriv_input_2 = get_internal_address_xpriv(&secp, master_xpriv, 0);
    let xpriv_change = get_internal_address_xpriv(&secp, master_xpriv, 1);

    // Get the PKs
    let pk_input_1 = Xpub::from_priv(&secp, &xpriv_input_1).to_pub();
    let pk_input_2 = Xpub::from_priv(&secp, &xpriv_input_2).to_pub();
    let pk_inputs = [pk_input_1, pk_input_2];
    let pk_change = Xpub::from_priv(&secp, &xpriv_change).to_pub();

    // Get the Witness Public Key Hashes (WPKHs)
    let wpkhs: Vec<WPubkeyHash> = pk_inputs.iter().map(|pk| pk.wpubkey_hash()).collect();

    // Get the unspent outputs that are locked to the key above that we control.
    // In a real application these would come from the chain.
    let utxos: Vec<TxOut> = dummy_unspent_transaction_outputs()
        .into_iter()
        .map(|(_, utxo)| utxo)
        .collect();

    // Get the addresses to send to.
    let address = receivers_address();

    // The inputs for the transaction we are constructing.
    let inputs: Vec<TxIn> = dummy_unspent_transaction_outputs()
        .into_iter()
        .map(|(outpoint, _)| TxIn {
            previous_output: outpoint,
            script_sig: ScriptBuf::default(),
            sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
            witness: Witness::default(),
        })
        .collect();

    // The spend output is locked to a key controlled by the receiver.
    let spend = TxOut {
        value: SPEND_AMOUNT,
        script_pubkey: address.script_pubkey(),
    };

    // The change output is locked to a key controlled by us.
    let change = TxOut {
        value: CHANGE_AMOUNT,
        script_pubkey: ScriptBuf::new_p2wpkh(&pk_change.wpubkey_hash()), // Change comes back to us.
    };

    // The transaction we want to sign and broadcast.
    let unsigned_tx = Transaction {
        version: transaction::Version::TWO,  // Post BIP 68.
        lock_time: absolute::LockTime::ZERO, // Ignore the locktime.
        input: inputs,                       // Input is 0-indexed.
        output: vec![spend, change],         // Outputs, order does not matter.
    };

    // Now we'll start the PSBT workflow.
    // Step 1: Creator role; that creates,
    // and add inputs and outputs to the PSBT.
    let mut psbt = Psbt::from_unsigned_tx(unsigned_tx).expect("Could not create PSBT");

    // Step 2:Updater role; that adds additional
    // information to the PSBT.
    let ty = EcdsaSighashType::All.into();
    let derivation_paths = [
        "m/84'/0'/0'/0/0".into_derivation_path().expect("valid derivation path"), // First external address.
        "m/84'/0'/0'/1/0".into_derivation_path().expect("valid derivation path"), // First internal address.
    ];
    let mut bip32_derivations = Vec::new();
    for (idx, pk) in pk_inputs.iter().enumerate() {
        let mut map = BTreeMap::new();
        let fingerprint = Fingerprint::from_str(MASTER_FINGERPRINT).expect("valid fingerprint");
        map.insert(pk.0, (fingerprint, derivation_paths[idx].clone()));
        bip32_derivations.push(map);
    }
    psbt.inputs = vec![
        Input {
            witness_utxo: Some(utxos[0].clone()),
            redeem_script: Some(ScriptBuf::new_p2wpkh(&wpkhs[0])),
            bip32_derivation: bip32_derivations[0].clone(),
            sighash_type: Some(ty),
            ..Default::default()
        },
        Input {
            witness_utxo: Some(utxos[1].clone()),
            redeem_script: Some(ScriptBuf::new_p2wpkh(&wpkhs[1])),
            bip32_derivation: bip32_derivations[1].clone(),
            sighash_type: Some(ty),
            ..Default::default()
        },
    ];

    // Step 3: Signer role; that signs the PSBT.
    psbt.sign(&master_xpriv, &secp).expect("valid signature");

    // Step 4: Finalizer role; that finalizes the PSBT.
    println!("PSBT Inputs: {:#?}", psbt.inputs);
    let final_script_witness: Vec<_> = psbt
        .inputs
        .iter()
        .enumerate()
        .map(|(idx, input)| {
            let (_, sig) = input.partial_sigs.iter().next().expect("we have one sig");
            Witness::p2wpkh(sig, &pk_inputs[idx].0)
        })
        .collect();
    psbt.inputs.iter_mut().enumerate().for_each(|(idx, input)| {
        // Clear all the data fields as per the spec.
        input.final_script_witness = Some(final_script_witness[idx].clone());
        input.partial_sigs = BTreeMap::new();
        input.sighash_type = None;
        input.redeem_script = None;
        input.witness_script = None;
        input.bip32_derivation = BTreeMap::new();
    });

    // BOOM! Transaction signed and ready to broadcast.
    let signed_tx = psbt.extract_tx().expect("valid transaction");
    let serialized_signed_tx = consensus::encode::serialize_hex(&signed_tx);
    println!("Transaction Details: {:#?}", signed_tx);
    // check with:
    // bitcoin-cli decoderawtransaction <RAW_TX> true
    println!("Raw Transaction: {}", serialized_signed_tx);
}

Let's go over the main function code block by block.

let secp = Secp256k1::new(); creates a new Secp256k1 context with all capabilities. Since we added the rand-std feature to our Cargo.toml,

Next, we get the individual extended private keys (xpriv) that we control. These are:

  • the master xpriv,
  • the xprivs for inputs 1 and 2; these are done with the get_external_address_xpriv and get_internal_address_xpriv functions.
  • the xpriv for the change output, also using the get_internal_address_xpriv function.

The inputs for the transaction we are constructing, here named utxos, are created with the dummy_unspent_transaction_outputs function. let address = receivers_address(); generates a receiver's address address. All of these are helper functions that we defined earlier.

In let input = TxIn {...} we are instantiating the inputs for the transaction we are constructing Inside the TxIn struct we are setting the following fields:

  • previous_output is the outpoint of the dummy UTXO we are spending; it is a OutPoint type.
  • script_sig is the script code required to spend an output; it is a ScriptBuf type. We are instantiating a new empty script with ScriptBuf::new().
  • sequence is the sequence number; it is a Sequence type. We are using the ENABLE_RBF_NO_LOCKTIME constant.
  • witness is the witness stack; it is a Witness type. We are using the default method to create an empty witness that will be filled in later after signing. This is possible because Witness implements the Default trait.

In let spend = TxOut {...} we are instantiating the spend output. Inside the TxOut struct we are setting the following fields:

  • value is the amount we are spending; it is a u64 type. We are using the const SPEND_AMOUNT that we defined earlier.
  • script_pubkey is the script code required to spend a P2WPKH output; it is a ScriptBuf type. We are using the script_pubkey method to generate the script pubkey from the receivers address. This will lock the output to the receiver's address.

In let change = TxOut {...} we are instantiating the change output. It is very similar to the spend output, but we are now using the const CHANGE_AMOUNT that we defined earlier3. This is done by setting the script_pubkey field to ScriptBuf::new_p2wpkh(...), which generates P2WPKH-type of script pubkey.

In let unsigned_tx = Transaction {...} we are instantiating the transaction we want to sign and broadcast using the Transaction struct. We set the following fields:

  • version is the transaction version; it can be a i32 type. However it is best to use the Version struct. We are using version TWO which means that BIP 68 applies.
  • lock_time is the transaction lock time; it is a LockTime enum. We are using the constant ZERO This will make the transaction valid immediately.
  • input is the input vector; it is a Vec<TxIn> type. We are using the input variable that we defined earlier wrapped in the vec! macro for convenient initialization.
  • output is the output vector; it is a Vec<TxOut> type. We are using the spend and change variables that we defined earlier wrapped in the vec! macro for convenient initialization.

Now we are ready to start our PSBT workflow.

The first step is the Creator role. We create a PSBT from the unsigned transaction using the Psbt::from_unsigned_tx method.

Next, we move to the Updater role. We add additional information to the PSBT. This is done by setting the psbt.inputs field to a vector of Input structs. In particular, we set the following fields:

All the other fields are set to their default values using the Default::default() method.

The following step is the Signer role. Here is were we sign the PSBT with the sign method. This method takes the master extended private key and the Secp256k1 context as arguments. It attempts to create all the required signatures for this PSBT using the extended private key.

Finally, we move to the Finalizer role. Here we finalize the PSBT, making it ready to be extracted into a signed transaction, and if necessary, broadcasted to the Bitcoin network. This is done by setting the following fields:

Finally, we extract the signed transaction from the PSBT using the extract_tx method.

As the last step we print both the transaction details and the raw transaction to the terminal using the println! macro. This transaction is now ready to be broadcast to the Bitcoin network.

For anything in production, the step 4 (Finalizer) should be done with the psbt::PsbtExt from the miniscript crate trait. It provides a .finalize_mut to a Psbt object, which takes in a mutable reference to Psbt and populates the final_witness and final_scriptsig for all inputs.

1

Please note that the CHANGE_AMOUNT is not the same as the DUMMY_UTXO_AMOUNT_INPUT_Ns minus the SPEND_AMOUNT. This is due to the fact that we need to pay a miner's fee for the transaction.

2

this is an arbitrary mainnet addresses from block 805222.

3

And also we are locking the output to an address that we control: the wpkh public key hash that we generated earlier.